Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Arch Med Res ; 54(2): 105-112, 2023 02.
Article in English | MEDLINE | ID: covidwho-2283669

ABSTRACT

OBJECTIVE: The innate immune response in humans involves a wide variety of factors, including the tripartite motif-containing 5α (TRIM5α) and 22 (TRIM22) as a cluster of genes on chromosome 11 that have exhibited antiviral activity in several viral infections. We analyzed the correlation of the expression of TRIM5α and TRIM22 with the severity of Coronavirus Disease 2019 (COVID-19) in blood samples of 330 patients, divided into two groups of severe and mild disease, versus the healthy individuals who never had contact with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). METHODS: The transcription level of TRIM5α and TRIM22 was determined by quantitative real-time polymerase chain reaction (qPCR). The laboratory values were collected from the patients' records. RESULTS: The expression of both genes was significantly lower in the severe group containing the hospitalized patients than in both the mild group and the control group. However, in the mild group, TRIM22 expression was significantly higher (p <0.0001) than in the control group while TRIM5α expression was not significantly different between these two groups. We found a relationship between the cycle threshold (Ct) value of patients and the expression of the aforementioned genes. CONCLUSION: The results of our study indicated that lower Ct values or higher RNA viral load might be associated with the downregulation of TRIM5α and TRIM22 and the severity of COVID-19. Additional studies are needed to confirm the results of this study.


Subject(s)
COVID-19 , Repressor Proteins , Humans , Repressor Proteins/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , SARS-CoV-2 , Disease Progression , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism
2.
Mol Ther ; 31(3): 774-787, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2253487

ABSTRACT

Acute kidney injury occurs frequently in COVID-19 patients infected by the coronavirus SARS-CoV-2, and infection of kidney cells by this virus has been reported. However, little is known about the direct impact of the SARS-CoV-2 infection upon the renal tubular cells. We report that SARS-CoV-2 activated signal transducer and activator of transcription 3 (STAT3) signaling and caused cellular injury in the human renal tubular cell line. Mechanistically, the viral protein ORF3A of SARS-CoV-2 augmented both NF-κB and STAT3 signaling and increased the expression of kidney injury molecule 1. SARS-CoV-2 infection or expression of ORF3A alone elevated the protein level of tripartite motif-containing protein 59 (TRIM59), an E3 ubiquitin ligase, which interacts with both ORF3A and STAT3. The excessive TRIM59 in turn dissociated the phosphatase TCPTP from binding to STAT3 and hence inhibited the dephosphorylation of STAT3, leading to persistent STAT3 activation. Consistently, ORF3A induced renal injury in zebrafish and mice. In addition, expression of TRIM59 was elevated in the kidney autopsies of COVID-19 patients with acute kidney injury. Thus, the aberrant activation of STAT3 signaling by TRIM59 plays a significant role in the renal tubular cell injury caused by SARS-CoV-2, which suggests a potential targeted therapy for the renal complications of COVID-19.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/metabolism , STAT3 Transcription Factor/metabolism , Zebrafish , Acute Kidney Injury/etiology , Viral Proteins/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 119(43): e2211467119, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2077262

ABSTRACT

Through a screen that combines functional and evolutionary analyses, we identified tripartite motif protein (Trim69), a poorly studied member of the Trim family, as a negative regulator of HIV-1 infection in interferon (IFN)-stimulated myeloid cells. Trim69 inhibits the early phases of infection of HIV-1, but also of HIV-2 and SIVMAC in addition to the negative and positive-strand RNA viruses vesicular stomatitis virus and severe acute respiratory syndrome coronavirus 2, with magnitudes that depend on the combination between cell type and virus. Mechanistically, Trim69 associates directly to microtubules and its antiviral activity is linked to its ability to promote the accumulation of stable microtubules, a program that we uncover to be an integral part of antiviral IFN-I responses in myeloid cells. Overall, our study identifies Trim69 as the antiviral innate defense factor that regulates the properties of microtubules to limit viral spread and highlights the cytoskeleton as an unappreciated battleground in the host-pathogen interactions that underlie viral infections.


Subject(s)
HIV Infections , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Replication , Humans , Immunity, Innate , Interferons/immunology , Microtubules/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , HIV Infections/immunology
4.
Signal Transduct Target Ther ; 7(1): 300, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2031821

ABSTRACT

Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Neoplasms/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics
5.
Hum Genomics ; 16(1): 33, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-2021342

ABSTRACT

BACKGROUND: The tripartite motif containing (TRIM)-22 participates in innate immune responses and exhibits antiviral activities. The present study aimed to assess of the relationship between TRIM22 single-nucleotide polymorphisms and clinical parameters with the coronavirus disease 2019 (COVID-19) infection severity. METHODS: TRIM22 polymorphisms (rs7113258, rs7935564, and rs1063303) were genotyped using TaqMan polymerase chain reaction (PCR) assay in 495 dead and 497 improved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients. RESULTS: In this study, the frequencies of TRIM22 rs1063303 GG, rs7935564 GG, and rs7113258 TT were significantly higher in dead patients than in improved patients, and higher viral load with low PCR Ct value was noticed in dead patients. The multivariate logistic regression analysis revealed that the lower levels of low-density lipoprotein (LDL), cholesterol, PCR Ct value, and lower 25-hydroxyvitamin D, and also higher levels of erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and TRIM22 rs1063303 GG, rs7113258 TT, and rs3824949 GG genotypes were related to the COVID-19 infection severity. CONCLUSION: Our finding proved the probable relationship between the COVID-19 infection severity with the genotypes of TRIM22 SNPs and clinical parameters. More research is required worldwide to show the association between the COVID-19 infection severity and host genetic factors.


Subject(s)
COVID-19 , Minor Histocompatibility Antigens , Polymorphism, Single Nucleotide , Repressor Proteins , Tripartite Motif Proteins , Humans , COVID-19/genetics , COVID-19/pathology , Minor Histocompatibility Antigens/genetics , Repressor Proteins/genetics , SARS-CoV-2 , Tripartite Motif Proteins/genetics
6.
Sci Rep ; 12(1): 11763, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1991656

ABSTRACT

Besides typical respiratory symptoms, COVID-19 patients also have gastrointestinal symptoms. Studies focusing on the gastrointestinal tumors derived from gastrointestinal tissues have raised a question whether these tumors might express higher levels of SARS-CoV-2 associated genes and therefore patients diagnosed with GI cancers may be more susceptible to the infection. In this study, we have analyzed the expression of SARS-CoV-2 associated genes and their co-expressions in gastrointestinal solid tumors, cancer cell lines and patient-derived organoids relative to their normal counterparts. Moreover, we have found increased co-expression of TMPRSS2-TMPRSS4 in gastrointestinal cancers suggesting that SARS-CoV-2 viral infection known to be mediated by this protease pair might facilitate the effects of viral infection in GI cancer patients. Further, our findings also demonstrate that TRIM31 expression is upregulated in gastrointestinal tumors, while the inhibition of TRIM31 significantly altered viral replication and viral processes associated with cellular pathways in gastrointestinal cancer samples. Taken together, these findings indicate that in addition to the co-expression of TMPRSS2-TMPRSS4 protease pair in GI cancers, TRIM31 expression is positively correlated with this pair and TRIM31 may play a role in providing an increased susceptibility in GI cancer patients to be infected with SARS-CoV-2 virus.


Subject(s)
Gastrointestinal Neoplasms , Membrane Proteins , Serine Endopeptidases , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , COVID-19/genetics , Gastrointestinal Neoplasms/genetics , Gene Expression , Humans , Membrane Proteins/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
7.
Viruses ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: covidwho-1325791

ABSTRACT

A weak production of INF-ß along with an exacerbated release of pro-inflammatory cytokines have been reported during infection by the novel SARS-CoV-2 virus. SARS-CoV-2 encodes several proteins able to counteract the host immune system, which is believed to be one of the most important features contributing to the viral pathogenesis and development of a severe clinical picture. Previous reports have demonstrated that SARS-CoV-2 N protein, along with some non-structural and accessory proteins, efficiently suppresses INF-ß production by interacting with RIG-I, an important pattern recognition receptor (PRR) involved in the recognition of pathogen-derived molecules. In the present study, we better characterized the mechanism by which the SARS-CoV-2 N counteracts INF-ß secretion and affects RIG-I signaling pathways. In detail, when the N protein was ectopically expressed, we noted a marked decrease in TRIM25-mediated RIG-I activation. The capability of the N protein to bind to, and probably mask, TRIM25 could be the consequence of its antagonistic activity. Furthermore, this interaction occurred at the SPRY domain of TRIM25, harboring the RNA-binding activity necessary for TRIM25 self-activation. Here, we describe new findings regarding the interplay between SARS-CoV-2 and the IFN system, filling some gaps for a better understanding of the molecular mechanisms affecting the innate immune response in COVID-19.


Subject(s)
COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , Transcription Factors/immunology , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/immunology , COVID-19/genetics , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , DEAD Box Protein 58/genetics , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferon-beta/genetics , Interferon-beta/immunology , Promoter Regions, Genetic , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , Signal Transduction , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
8.
Mol Cell ; 81(13): 2838-2850.e6, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1202181

ABSTRACT

SARS-CoV-2 is an RNA virus whose success as a pathogen relies on its abilities to repurpose host RNA-binding proteins (RBPs) and to evade antiviral RBPs. To uncover the SARS-CoV-2 RNA interactome, we here develop a robust ribonucleoprotein (RNP) capture protocol and identify 109 host factors that directly bind to SARS-CoV-2 RNAs. Applying RNP capture on another coronavirus, HCoV-OC43, revealed evolutionarily conserved interactions between coronaviral RNAs and host proteins. Transcriptome analyses and knockdown experiments delineated 17 antiviral RBPs, including ZC3HAV1, TRIM25, PARP12, and SHFL, and 8 proviral RBPs, such as EIF3D and CSDE1, which are responsible for co-opting multiple steps of the mRNA life cycle. This also led to the identification of LARP1, a downstream target of the mTOR signaling pathway, as an antiviral host factor that interacts with the SARS-CoV-2 RNAs. Overall, this study provides a comprehensive list of RBPs regulating coronaviral replication and opens new avenues for therapeutic interventions.


Subject(s)
Autoantigens/genetics , COVID-19/genetics , RNA, Viral/genetics , Ribonucleoproteins/genetics , SARS-CoV-2/genetics , COVID-19/virology , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/pathogenicity , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Protein Binding/genetics , Protein Interaction Maps/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/pathogenicity , TOR Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Transcriptome/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Virus Replication/genetics
9.
Biochem Biophys Res Commun ; 556: 87-92, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1173393

ABSTRACT

Virus-induced cytokine storm has been a devastating actuality in clinic. The abnormal production of type I interferon (IFN-1) and upregulation of multiple cytokines induced strong inflammation and thus lead to shock and organ failure. As an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37) regulates the ubiquitination of multiple proteins including TRAFs. RNA sequencing was performed to investigated the alteration of transcriptional profile of H1N1-infected patients. qRT-PCR assay was performed to investigate the RNA levels of certain genes. The group of immune cells was examined by the Flow cytometry analysis. H&E staining was applied to evaluate lung inflammation of WT and TRIM37-KO mice. ELISA assay was performed to demonstrate the alteration of multiple cytokines. The protein levels in NF-kB signaling was estimated by western blotting and immunoprecipitation assays were applied to demonstrate the direct interaction between TRIM37 and TRAF-6. The RNA level of TRIM37 decreased in CD11b+ cells of Flu-infected patients. Knockout of TRIM37 inhibited the immune responses of H1N1-infected mice. TRIM37 deficiency reduced the levels of virous proinflammatory cytokines in bone marrow derived macrophages (BMDMs). Mechanically, TRIM37 promoted the K63-linked ubiquitination of TRAF6. TRIM37 negatively regulated inflammatory responses induced by virus infection via promoting TRAF6 ubiquitination at K63.


Subject(s)
Inflammation/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , TNF Receptor-Associated Factor 6/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals , Female , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/metabolism , Influenza, Human/virology , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , TNF Receptor-Associated Factor 6/chemistry , Tripartite Motif Proteins/deficiency , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
10.
Curr Opin Microbiol ; 59: 50-57, 2021 02.
Article in English | MEDLINE | ID: covidwho-1017019

ABSTRACT

Tripartite motif (TRIM) proteins are a highly versatile family of host-cell factors that play an integral role in the mammalian defense against pathogens. TRIM proteins regulate either transcription-dependent antiviral responses such as pro-inflammatory cytokine induction, or they modulate other important cell-intrinsic defense pathways like autophagy. Additionally, TRIM proteins exert direct antiviral activity whereby they antagonize specific viral components through diverse mechanisms. Here, we summarize the latest discoveries on the molecular mechanisms of antiviral TRIM proteins and also discuss current and future trends in this fast-evolving field.


Subject(s)
Antiviral Agents , Tripartite Motif Proteins , Animals , Antiviral Agents/metabolism , Autophagy/immunology , Cytokines/immunology , Humans , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL